Mutations in the SOD2 promoter reveal a molecular basis for an activating protein 2-dependent dysregulation of manganese superoxide dismutase expression in cancer cells.
نویسندگان
چکیده
A primary antioxidant enzyme in mitochondria, manganese superoxide dismutase (MnSOD), plays a critical role in the survival of aerobic life. It is well documented that, compared with normal cell counterparts, MnSOD level is decreased in neoplastic transformed cells but is increased in aggressive cancers. However, the underlying mechanism for the observed dysregulation of MnSOD in cancer is unknown. We have identified previously a unique set of mutations located in the promoter region of the SOD2 gene in several types of cancer cells. We found that a C-to-T transition at -102 and an insertion of A at -93 down-regulate MnSOD transcription by interrupting the formation of a single-stranded loop that is essential for a high level of promoter activity. Here, we show that the additional downstream mutation, C-to-G transversion at -38, creates a binding site for the transcription factors specificity protein 1 (Sp1) and activating protein 2 (AP-2). The promoter function is regulated by the relative levels of Sp1 and AP-2. In cytokine-induced expression of the SOD2 gene, Sp1 cooperates with a transcriptional complex containing nuclear factor-kappaB and nucleophosmin. The presence of AP-2 attenuates this induction. Our results suggest that the high level of MnSOD observed in aggressive cancer cells may be due, in part, to the absence of AP-2 transcriptional repression.
منابع مشابه
Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2).
Manganese superoxide dismutase (MnSOD) plays an important role in regulating cellular redox conditions. Expression of MnSOD has been shown to protect against damage by oxidative stress and to suppress the malignant phenotype of human cancer cells. We have previously cloned the human MnSOD (SOD2) gene and analysed its 5' proximal promoter, which has been characterized by a lack of a TATA or CAAT...
متن کاملAcquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase.
Acquired resistance of cancer cells to anticancer drugs or ionizing radiation (IR) is one of the major obstacles in cancer treatment. Pancreatic cancer is an exceptional aggressive cancer, and acquired drug resistance in this cancer is common. Reactive oxygen species (ROS) play an essential role in cell apoptosis, which is a key mechanism by which radio- or chemotherapy induce cell killing. Mit...
متن کاملThe effect on radioresistance of manganese superoxide dismutase in nasopharyngeal carcinoma.
Failure to control nasopharyngeal carcinomas (NPC) is mainly due to a portion of radioresistant phenotype. Identifying gene targets for radiosensitization is an important strategy in improving anticancer treatments. Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species that are associated with radiation-induced cellular apoptosis and necrosis. The antioxidant...
متن کاملEffects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer.
PURPOSE Advanced prostate cancer is first treated with androgen deprivation therapy. However, tumors become resistant to and grow despite castrate levels of testosterone. Growth and proliferation of CRPC is mediated by gain-of-function changes in the AR and AR reactivation. Expression of manganese superoxide dismutase (SOD2), which regulates cellular ROS, is markedly down-regulated in CRPC when...
متن کاملFOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3.
Ataxin-3 (ATXN3), the disease protein in spinocerebellar ataxia type 3 (SCA3), binds to target gene promoters and modulates transcription by interaction with transcriptional regulators. Here, we show that ATXN3 interacts with the forkhead box O (FOXO) transcription factor FOXO4 and activates the FOXO4-dependent transcription of the manganese superoxide dismutase (SOD2) gene. Upon oxidative stre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2008